CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.

نویسندگان

  • S Chauvaux
  • I T Paulsen
  • M H Saier
چکیده

Recent work has shown that in Bacillus subtilis catabolite repression of several operons is mediated by a mechanism dependent on DNA-binding protein CcpA complexed to a seryl-phosphorylated derivative of HPr [HPr(Ser-P)], the small phosphocarrier protein of the phosphoenolpyruvate-sugar phosphotransferase system. In this study, it was found that a transposon insertional mutation resulted in the partial loss of gluconate (gnt) and xylose (xyl) operon catabolite repression by glucose, mannitol, and sucrose. The transposon insertion was localized to a gene, designated ccpB, encoding a protein 30% identical to CcpA, and relief from catabolite repression was shown to be due to the absence of CcpB rather than to the absence of a protein encoded by a downstream gene within the same operon. The relative intensities of CcpA- and CcpB-mediated catabolite repression depended on growth conditions. On solid media, and when cells were grown in liquid media with little agitation, CcpB and CcpA both proved to function in catabolite repression. However, when cells were grown in liquid media with much agitation, CcpA alone mediated catabolite repression. Like CcpA, CcpB appears to exert its catabolite-repressing effect by a mechanism dependent on the presence of HPr(Ser-P).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic regulation of Bacillus subtilis Krebs cycle genes.

Krebs cycle enzyme activity in Bacillus subtilis was examined under aerobic and anaerobic conditions. Citrate synthase and aconitase activities in cells grown anaerobically in the presence of nitrate were reduced by as much as 10- and 30-fold, respectively, from levels observed under aerobic culture conditions. The maximum level of isocitrate dehydrogenase activity during anaerobic growth was o...

متن کامل

Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism.

A catabolite-responsive element (CRE), a binding site for the CcpA transcription factor, was identified within the sigL structural gene encoding sigma(L) in Bacillus subtilis. We show that CcpA binds to this CRE to regulate sigL expression by a "roadblock" mechanism and that this mechanism in part accounts for catabolite repression of sigma(L)-directed levD operon expression.

متن کامل

Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.

Expression of the Bacillus subtilis hut operon is subject to regulation by catabolite repression. A set of hut-lacZ transcriptional fusions was constructed and used to identify two cis-acting sites involved in catabolite repression. The hutOCR1 operator site lies immediately downstream of the hut promoter and weakly regulates hut expression in response to catabolite repression. The downstream h...

متن کامل

Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus.

The mechanism underlying catabolite repression in Bacillus species remains unsolved. The gluconate (gnt) operon of Bacillus subtilis is one of the catabolic operons which is under catabolite repression. To identify the cis sequence involved in catabolite repression of the gnt operon, we performed deletion analysis of a DNA fragment carrying the gnt promoter and the gntR gene, which had been clo...

متن کامل

Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.

Previous studies have suggested that the transcription factor CcpA, as well as the coeffectors HPr and Crh, both phosphorylated by the HprK kinase/phosphorylase, are primary mediators of catabolite repression and catabolite activation in Bacillus subtilis. We here report whole transcriptome analyses that characterize glucose-dependent gene expression in wild-type cells and in isogenic mutants l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 3  شماره 

صفحات  -

تاریخ انتشار 1998